Статический (проточный) кавитатор

//Статический (проточный) кавитатор

Назначение

Статические (гидродинамические) кавитаторы применяются для интенсификации процессов приготовления различных композиций в химической, нефтехимической, пищевой, целлюлозно-бумажной и других отраслях промышленности.

Принцип работы таких смесителей основан на нестационарности потоков жидкости и на активных гидродинамических эффектах воздействия на обрабатываемые вещества. Статические гидродинамические кавитаторы предназначены для структурных преобразований жидкости с целью изменения ее физико-химических параметров, интенсификации массообменных и гидромеханических процессов. Обработка жидкости в кавитаторе осуществляется за счет импульсного многофакторного воздействия: вихреобразования, микромасштабных пульсаций давления, интенсивной кавитации, ударных волн и нелинейных гидроакустических эффектов. Кавитатор осуществляет преобразование энергии низкой концентрации в энергию высокой локальной концентрации в неустойчивых точках структуры вещества. Пространственная и временная концентрация энергии позволяет получить большую мощность импульсного энергетического воздействия, совершить энергетическую накачку, высвободить внутреннюю энергию вещества, инициировать многочисленные квантовые, каталитические, цепные, самопроизвольные, лавинообразные и другие энергонасыщенные процессы.

Особенности гидродинамического (проточного) кавитатора

Конструкции гидродинамических кавитаторов обеспечивают многократную перестройку поля скоростей и изменение направления линий тока потока жидкости и смешиваемых компонентов.  В отличие от РИА статические кавитаторы рассчитаны на работу с жидкостями определённой вязкости, поэтому разрабатываются под индивидуальную среду обработки.

 

Статические гидродинамические кавитаторы имеют небольшие габариты при высокой производительности. Отличительные особенности данного типа оборудования — это обеспечение непрерывности химико-технологического процесса и его высокая интенсификация, возможность реализации значительных величин деформаций и напряжений сдвига, интенсивное гидродинамическое и кавитационное воздействие, что обусловливает высокое качество смешения компонентов, интенсификацию диффузионных процессов простоту и надежность аппаратурного оформления. Экономическая эффективность применения гидродинамических кавитаторов обусловлена низкой металлоемкостью оборудования, невысокими трудозатратами по обслуживанию и эксплуатации по сравнению с емкостной перемешивающей аппаратурой.

Входное давление для жидкоости, поступающей в обработку в статический кавитатор, составляет обычно не менее 15бар, что нужно учитывать при проектировании систем. Благодаря высокому давлению в большинстве случаев необходимый эффект обработки достигается за счёт одного прохода через кавитатор (реактор).

ПРИМЕР ЛИНИЙ ТОКА ЖИДКОСТИ ДЛЯ СТАТИЧЕСКОГО ГИДРОДИНАМИЧЕСКОГО СМЕСИТЕЛЯ
ПРИМЕР ЛИНИЙ ТОКА ЖИДКОСТИ ДЛЯ СТАТИЧЕСКОГО ГИДРОДИНАМИЧЕСКОГО СМЕСИТЕЛЯ

 

Статические гидродинамические кавитаторы обладают следующими преимуществами:

  • простота конструкции и легкость изготовления рабочих органов;
  • отсутствие движущихся деталей и уплотняемых подвижных соединений;
  • отсутствие застойных зон;
  • легкость обслуживания;
  • высокая прочность и герметичность;
  • возможность работы при больших давлениях и температурах в смешиваемых жидкостях;
  • возможность работы со взрыво- пожароопасными и токсичными жидкостями;
  • высокая производительность при малом рабочем объеме зоны смешения;
  • устойчивость работы, возможность использования для разнообразных процессов;
  • возможность использования для обработки жидкостей широкого диапазона вязкостей.

Основным недостатком гидродинамических кавитаторов является большое гидравлическое сопротивление и необходимость применения насосов высокого давления — свыше 16бар.

 

Принцип действия и конструкция

Схема гидродинамического кавиатора
Схема гидродинамического кавиатора: (а),  конструкция (б) и схемы  установки (в, г) смесительных элементов.

Винтовые элементы на поверхности центральной трубы
Винтовые элементы на поверхности центральной трубы

Эффективными элементами статических кавитаторов являются перегородки с отверстием (отверстиями). Перегородка может быть выполнена в форме диска, в котором имеются несколько каналов для прохождения жидкости (рис. 3). Каналы равномерно распределены на рабочей поверхности диска и могут иметь различную форму и различный размер.

Перегородки с каналами различной формы
Перегородки с каналами различной формы

При прохождении жидкости через отверстия в диске в потоке жидкости возникают вихреобразования, отрывные течения и кавитация. Данные эффекты воздействуют на частицы жидкости и способствуют их интенсивному дроблению и гомогенизации, срыву пограничных слоев на частицах.

Перемешивание жидкостей может быть также достигнуто за счет создания резкого расширения или сужения канала, т. е. за счет изменения размеров и конфигураций отверстий, вызывающих изменение скорости потока рабочей среды и возникновение мощного вихреобразования.

При прохождении жидкости через сужение канала, а затем через расширение в канале, в потоке жидкости возникают вихреобразования, отрывные течения и кавитация. Перечисленные эффекты воздействуют на частицы жидкости и способствуют их интенсивному дроблению и гомогенизации, срыву пограничных слоев на частицах.

Поток жидкости и смешиваемые компоненты, обтекая неподвижные элементы, непрерывно разделяются на несколько потоков, увеличивая тем самым поверхность раздела компонентов и их дисперсность.

 

Форма обтекаемых или плохо обтекаемых элементов вынуждает потоки жидкостей двигаться с различными скоростями, возрастающими по мере удаления от поверхности этих элементов, что приводит к относительному движению слоев, вихреобразованию и кавитации.

При резком увеличении проходного сечения, изменении направления движения потока, его вихревом характере, возникают условия для возникновения и роста кавитационных пузырьков. При захлопывании кавитационных пузырьков они распадаются на отдельные деформированные пузырьки. Давление и температура парогазовой смеси в образовавшихся деформированных пузырьках повышены. В зоне локального понижения давления в потоке жидкости они легко расширяются и становятся новыми зародышами кавитации, менее прочными, чем постоянно имеющиеся в жидкости. Кавитационные полости, возникшие на этих зародышах, порождают новые. Внутри кавитационной области идет непрерывный процесс размножения и коагуляции кавитационных пузырьков, причем кавитационный порог несколько уменьшается, так как роль кавитационных зародышей начинают выполнять равновесные пузырьки, объем и газосодержание у которых больше, чем у зародышей кавитационных пузырьков.

Кавитационные пузырьки по ходу движения потока жидкости пульсируют и схлопываются создавая микромасштабные пульсации и выбросы кумулятивных струек, воздействуя на частицы обрабатываемой жидкости и на жидкость в целом, интенсифицируя тепло- и массообменные процессы и осуществляя деструкцию веществ.

 

Характеристики

Проточные кавитаторы изготавливаются индивидуально, в зависимости от решаемой задачи.

Пропускная способность проточных кавитаторов — от 5м3/ч до 30м3/ч.